Abertay Research Collections >
Research Centres >
SIMBIOS Collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10373/1069

View Statistics
Title: The effect of heterogeneity on invasion in spatial epidemics: from theory to experimental evidence in a model system
Authors: Neri, Franco M.
Bates, Anne
Füchtbauer, Winnie S.
Pérez-Reche, Francisco J.
Taraskin, Sergei N.
Otten, Wilfred
Bailey, Douglas J.
Gilligan, Christopher A.
Affiliation: University of Abertay Dundee. Scottish Informatics, Mathematics, Biology and Statistics Centre
Keywords: Rhizoctonia solani
Issue Date: Sep-2011
Publisher: Public Library of Science
Type: Journal Article
Refereed: peer-reviewed
Rights: This is the published version of this article. Reproduced by permission of the publisher. Published version (c)Franco M. Neri, Anne Bates, Winnie S. Füchtbauer, Francisco J. Pérez-Reche, Sergei N. Taraskin, Wilfred Otten, Douglas J. Bailey, Christopher A. Gilligan, available from http://dx.doi.org/10.1371/journal.pcbi.1002174
Citation: Neri, F.M., et al. 2011. The effect of heterogeneity on invasion in spatial epidemics: from theory to experimental evidence in a model system. PLoS Computational Biology. 7(9): pp.1-9. Available from http://dx.doi.org/10.1371/journal.pcbi.1002174
Abstract: Heterogeneity in host populations is an important factor affecting the ability of a pathogen to invade, yet the quantitative investigation of its effects on epidemic spread is still an open problem. In this paper, we test recent theoretical results, which extend the established “percolation paradigm” to the spread of a pathogen in discrete heterogeneous host populations. In particular, we test the hypothesis that the probability of epidemic invasion decreases when host heterogeneity is increased. We use replicated experimental microcosms, in which the ubiquitous pathogenic fungus Rhizoctonia solani grows through a population of discrete nutrient sites on a lattice, with nutrient sites representing hosts. The degree of host heterogeneity within different populations is adjusted by changing the proportion and the nutrient concentration of nutrient sites. The experimental data are analysed via Bayesian inference methods, estimating pathogen transmission parameters for each individual population. We find a significant, negative correlation between heterogeneity and the probability of pathogen invasion, thereby validating the theory. The value of the correlation is also in remarkably good agreement with the theoretical predictions. We briefly discuss how our results can be exploited in the design and implementation of disease control strategies.
URI: http://hdl.handle.net/10373/1069
ISSN: 1553-734X
Appears in Collections:SIMBIOS Collection
Science Engineering & Technology Collection

Files in This Item:

File Description SizeFormat
OttenPlosCompBiolPubl2011.pdf1.08 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback