Logo
 

Abertay Research Collections >
School of Science, Engineering & Technology >
Science Engineering & Technology Collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10373/303

View Statistics
Title: On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. I: real variable
Authors: Paris, Richard B.
Affiliation: University of Abertay Dundee. School of Contemporary Sciences
Keywords: Asymptotics
Hyperasymptotics
Hadamard expansions
Laplace-type integrals
Issue Date: Jun-2004
Publisher: Elsevier
Type: Journal Article
Refereed: peer-reviewed
Rights: Published version (c)Elsevier, available from DOI: 10.1016/j.cam.2003.10.005
Citation: Paris, R. B. 2004. On the use of Hadamard expansions in hyperasymptotic evaluation of Laplace-type integrals. I: real variable. Journal of Computational and Applied Mathematics. 167(2): pp.293-319. [Online] Available from: DOI: 10.1016/j.cam.2003.10.005
Abstract: We review and discuss the application of Hadamard expansions to the hyperasymptotic evaluation of Laplace integrals where, for simplicity, in this paper x is restricted to be a positive real variable. The integration path C can be taken over both finite and semi-infinite intervals in the complex plane. In general, these expansions take the form of compound expansions, each associated with a different exponential level, and involve absolutely convergent series containing the incomplete gamma function as a smoothing factor. The early terms in each convergent expansion possess a rapid asymptotic-like decay (when the variable x is large) with late terms that can be transformed into a rapid decay comparable with that of the early terms. The Hadamard expansion of the above integral when the phase function p(t) is linear is shown to depend significantly on the singularity structure of the amplitude function f(t). The application of the theory to Laplace-type integrals with quadratic, cubic and nonpolynomial phase functions is considered; in addition to the amplitude function, the location of the saddle points satisfying p′(t)=0 also plays a role in the detailed structure of the different exponential levels in the resulting Hadamard expansion. Numerical examples are given to illustrate the accuracy that can be achieved with this new procedure.
URI: http://hdl.handle.net/10373/303
ISSN: 0377-0427
Appears in Collections:Science Engineering & Technology Collection

Files in This Item:

There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback