Logo
 

Abertay Research Collections >
Research Centres >
SIMBIOS Collection >

Please use this identifier to cite or link to this item: http://hdl.handle.net/10373/729

View Statistics
Title: Bayesian estimation for percolation models of disease spread in plant populations
Authors: Gibson, G. J.
Otten, Wilfred
Filipe, J. A. N.
Cook, A.
Marion, G.
Gilligan, C. A.
Affiliation: University of Abertay Dundee. Scottish Informatics, Mathematics, Biology and Statistics Centre
Keywords: Spatio-temporal modeling
Stochastic modelling
Fungal pathogens
Bayesian inference
Markov chain Monte Carlo
Issue Date: Dec-2006
Publisher: Springer Verlag
Type: Journal Article
Refereed: peer-reviewed
Rights: This is the author's final version of this article. Published version (c)Springer Verlag, available from http://dx.doi.org/10.1007/s11222-006-0019-z
Citation: Gibson, G.J., et al. 2006. Bayesian estimation for percolation models of disease spread in plant populations. Statistics and Computing. 16(4): pp.391-402. Available from http://dx.doi.org/10.1007/s11222-006-0019-z
Abstract: Statistical methods are formulated for fitting and testing percolation-based, spatio-temporal models that are generally applicable to biological or physical processes that evolve in spatially distributed populations. The approach is developed and illustrated in the context of the spread of Rhizoctonia solani, a fungal pathogen, in radish but is readily generalized to other scenarios. The particular model considered represents processes of primary and secondary infection between nearest-neighbour hosts in a lattice, and time-varying susceptibility of the hosts. Bayesian methods for fitting the model to observations of disease spread through space and time in replicate populations are developed. These use Markov chain Monte Carlo methods to overcome the problems associated with partial observation of the process. We also consider how model testing can be achieved by embedding classical methods within the Bayesian analysis. In particular we show how a residual process, with known sampling distribution, can be defined. Model fit is then examined by generating samples from the posterior distribution of the residual process, to which a classical test for consistency with the known distribution is applied, enabling the posterior distribution of the P-value of the test used to be estimated. For the Rhizoctonia-radish system the methods confirm the findings of earlier non-spatial analyses regarding the dynamics of disease transmission and yield new evidence of environmental heterogeneity in the replicate experiments.
URI: http://hdl.handle.net/10373/729
ISSN: 0960-3174
Appears in Collections:SIMBIOS Collection
Science Engineering & Technology Collection

Files in This Item:

File Description SizeFormat
OttenStatCompAuthor2006.pdf226.03 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! DSpace Software Copyright © 2002-2010  Duraspace - Feedback